Tino Sehgal, transaction orale

May 31, 2012 § Leave a comment

« Un achat du Centre Pompidou relance le débat sur le secret des transactions »

Michel Guerrin(Le Monde, 16-17 janvier 2011. page 20)

Cela fait quinze ans que l’artiste Fred Forest ferraille avec le Centre Pompidou. Il demande à l’institution parisienne de dévoiler le prix des oeuvres d’art qu’il achète pour enrichir les collections de son Musée national d’art moderne(MNAM). Fred Forest avance qu’il s’agit de l’argent du contribuable, et il veut montrer que les musées achètent trop cher, « au plus fort de la cote » d’un artiste. En 1997, le Conseil d’Etat a donné raison à Beaubourg : les musées achètent « à des prix privilégiés », et divulguer leurs transactions pourrait interférer sur le marché de l’art, voire le déstabiliser.

Un nouvel achat du Centre Pompidou, en 2010, semble si atypique qu’il donne à Fred Forest l’occasion de relancer le débat. Depuis le 9 janvier, Forest a publié dans la rubrique « actualités » de son site, webnetmuseum.org, une « lettre ouverte à Alain Seban, président du Centre Pompidou ». Il demande à l’institution de dire combien et dans quelles conditions a été achetée l’oeuvre de Tino Sehgal This Situation(2007).

Agé de 34ans, d’origine indienne, né à Londres, installé à Berlin, Tino Sehgal a une grosse réputation dans le monde de l’art contemporain – il a exposé au Musée Guggenheim de New York, en 2010. Ses oeuvres, immatérielles, proches du spectacle ou de l’événement, sont interprétées par des acteurs. Ceux qui ont vu This Situation à la galerie Marian Goodman, à Paris, à l’automne 2009, se souviennent de six acteurs en chair et en os qui discutent de thèmes dictés par l’artiste, à partir de citations de penseurs importants, dont des situationnistes.

Nombre d’artistes conceptuels depuis les années 1960, comme Yves Klein, les minimalistes, les adeptes du land art, ont conçu des œuvres ou des performances qui n’existent pas en tant que telles, mais sont décrites sur le papier – titre, matériaux, fabrication, protocole d’accrochage – afin de pouvoir les recréer pour une exposition.

 Rien de tout cela dans l’univers de Sehgal, pour qui ses performances se transmettent oralement. Aucune trace écrite de l’œuvre. Aucune trace visuelle non plus, puisqu’il refuse qu’elle soit filmée, photographiée, et même enregistrée.

Comment, dans ces conditions, le Centre Pompidou pourra-t-il reconstituer This Situation ? « Cet achat a fait l’objet d’une rencontre orale, le 20 avril 2010 chez un notaire, explique Alfred Pacquement, directeur du musée parisien. Il y avait l’artiste, un conservateur du MNAM, un représentant de la Galerie Marian Goodman et moi-même. L’artiste a énoncé les règles qui régissent l’œuvre pour que nous les ayons en mémoire, et que nous puissions ensuite les conserver dans un dossier conservé au musée. » M.Pacquement ajoute que des musées du monde, comme le Musée d’art moderne de New York, ont procédé de la même façon.

Ce n’est pas cela qui pose problème à Fred Forest, mais la transaction financière. S’appuyant sur un article de la revue en ligne ArtsThree, il affirme que Seghal pousse au bout le principe d’oralité : il ne délivre pas de certificat pour garantir l’authenticité de l’œuvre, l’acheteur doit payer en liquide, et il ne reçoit en échange aucun récépissé. « Seule l’intervention d’un notaire comme témoin oculaire apporte une touche de formalité à cette drôle de vente », peut-on lire sur le site. Aussi, Fred Forest se demande si un établissement public peut mener à bien une transaction financière sans reçu.

Alfred Pacquement répond que les choses ne se sont pas passées comme cela : « Nous possédons une facture de la galerie Goodman, et nous n’avons pas payé en liquide. Nous avons suivi nos règles habituelle. » Et j’ajouter : Si nous avions dû payer en liquide et sans facture, nous aurions été embarrassés. »

Fred Forest rétorque alors que si un document a été remis à Beaubourg, un principe central de l’artiste aurait été bafoué, la transaction serait entachée d’une « grave escroquerie intellectuelle et morale ». L’œuvre serait à ce point dénaturée qu’elle en perdrait « toute légitimité, et en conséquence toute valeur marchande ».

Il semble en fait que c’est Tino Sehgal lui-même qui a changé d’attitude au fur et à mesure que sa cote grimpait. « Sans doute fonctionnait-il différemment quand il n’avait pas de galerie », remarque Alfred Pacquement. Il y a six ou sept ans, quand les prix restaient modestes, sous les 10 000 euros, sans doute était-il plus « puriste » dans ses transactions. Mais aujourd’hui, ses oeuvres valent de 50 000 à 100 000 euros, dit-on à la galerie Goodman.

 « Les premiers collectionneurs de Seghal ont pu payer en cash, mais ce n’est plus possible,  c’est devenu interdit », explique Agnès Fierobe, directrice de la galerie Marian Goodman. Cette dernière précise une subtilité : « la facture est envoyée par mail, elle n’est jamais sous forme écrite. » Reste que le Centre Pompidou comme la galerie Marian Goodman se refusent à dire le montant de la transaction.

 

« Art immatériel »

Arthur Dyment, Chéreng(Nord)(Le courrier du jour, Le Monde, 25 janvier 2011. page 27)

Je ne regrette pas d’avoir lu Le Monde des 16-17 janvier avec l’article sur l’oeuvre conceptuelle de Tino Sehgal. Cela m’a appris qu’il existait un marché de l’art immatériel. Les oeuvres d’art immatérielles ne laissent pas de trace, elles se transmettent oralement. Tout est immatérielle dans l’acquisition d’une oeuvre d’art immatérielle : pas d’acte de vente, pas de certificat d’authenticité ; seul le paiement n’est pas immatériel. C’est dans ces conditions que M. Sehgal a cédé une de ses oeuvres immatérielles au Centre Pompidou pour un montant inconnu, gardé secret, mais régie rubis sur l’ongle par les contribuable. La justification de cet achat, donnée par le directeur du Centre Pompidou, en réponse à une critique, est : « Le Muse d’art moderne de New York l’a déjà fait. » Mouché, le contraditeur ! En matière d’art, nous voilà arrivés au bout du chemin : les artistes se sont hissés au niveau de certains hommes politiques qui, depuis longtemps, savent vendre du vent.

 

Advertisements

“How can nothing be something?”

May 29, 2012 § Leave a comment

십진법 숫자 중 가장 늦게 발명되고, 0이라는 개념을 발견해 놓고도 ‘아무것도 없다’는 것의 형태를 인정하는 데 또 한참이나 걸렸다.

기원전 2000년대 중반, 바빌로니아인들이 ‘없다’라는 숫자 개념을 사용했고, 기원전 4세기부터 중국에서도 0과 음수의 개념이 나타난다. 중국인들은 8세기 인도에서 0이라는 기호가 들어오기 전까지는 글자나 네모 형태의 기호를 사용했다. 인도인들의 기록엔 원형태의 0이라는 기호가 876년 유물에 보인다. 아랍에서는 0이라는 개념과 기호가 5세기경에 나타나고, 825년에 페르시아의 과학자, al-Khwārizmī는 그리스와 힌두인들의 지식을 정리하고, 0의 개념을 설명한 산수책을 출간하였다. 그리고 이 책이 12세기에 라틴어로 번역되면서, 서양세계에 0을 비롯한 아라비아 숫자가 소개되었다. 한편, 고대 그리스, 로마인들은 0이라는 숫자 개념에 확신이 없었던 것 같다. 어떻게 ‘없다’는 것이 ‘어떤 것’이 될 수 있는지에 관한 논쟁이 철학으로 연결되었고, 중세에 이르러서는 0의 존재와 ‘아무 것도 없다’는 상태에 대한 신학적인 논쟁으로 이어졌다.  기원전 130년경 바빌로니아의 영향을 받은 Ptolemy가 현대의 0에 해당하는 개념과 기호를 Syntaxis Mathematica라는 책에 소개하였고, 이것이 0을 사용한 그리스 숫자에 대한 최초의 기록일 것이다.  하지만 0이라는 개념과 기호는 부분적으로만 사용되었을 뿐 그리스 수학계에 일반적으로 통용되지는 않았다. 525년경에 이르러 달력표기에 로마숫자와 함께 글자로 0이라는 개념을 표기하기도 했다. 기원전 마야인들과 중미대륙 사람들도 0이라는 개념과 기호를 사용했지만 다른 고대사회에 큰 영향을 끼치지는 못했다.  유럽에서는 15세기 후반까지 아라비아숫자체계는 수학자들 사이에서 쓰이고, 일상적으로는 로마자가 통용되다가, 16세기에 이르러서야 널리 쓰이게 되었다.

‘없다’라는 개념이 형태를 갖추고서야 십진법이 완성되었고, 지금은 o과 1일 지배하는 컴퓨터의 시대이다.

없다는 것의 형태를 인정한 것처럼, 비물질도 물질의 한 형태로 편입시킬 수 있을까?

물질과 비물질의 구분이 애매모호해지는 증감현실 시대엔 이러한 접근방법이 더 타당하지 않을까?

The word zero came via French zéro from Venetian zero, which (together with cypher) came via Italian zefiro from Arabic صفر, ṣafira = “it was empty”, ṣifr = “zero”, “nothing”. This was a translation of the Sanskrit word shoonya (śūnya), meaning “empty”.

Mesopotamia

By the middle of the 2nd millennium BC, the Babylonian mathematics had a sophisticated sexagesimal positional numeral system. The lack of a positional value (or zero) was indicated by a space between sexagesimal numerals. By 300 BC, a punctuation symbol (two slanted wedges) was co-opted as a placeholder in the same Babylonian system. In a tablet unearthed at Kish (dating from about 700 BC), the scribe Bêl-bân-aplu wrote his zeros with three hooks, rather than two slanted wedges.

The Babylonian placeholder was not a true zero because it was not used alone. Nor was it used at the end of a number. Thus numbers like 2 and 120 (2×60), 3 and 180 (3×60), 4 and 240 (4×60), looked the same because the larger numbers lacked a final sexagesimal placeholder. Only context could differentiate them.

India

The concept of zero as a number and not merely a symbol for separation is attributed to India, where, by the 9th century AD, practical calculations were carried out using zero, which was treated like any other number, even in case of division. The Indian scholar Pingala (circa 5th-2nd century BC) used binary numbers in the form of short and long syllables (the latter equal in length to two short syllables), making it similar to Morse code. He and his contemporary Indian scholars used the Sanskrit word śūnya to refer to zero or void. The use of a blank on a counting board to represent 0 dated back in India to 4th century BC. In 498 AD, Indian mathematician and astronomer Aryabhata stated that “Sthanam sthanam dasa gunam” or place to place in ten times in value, which is the origin of the modern decimal-based place value notation.

The oldest known text to use a decimal place-value system, including a zero, is the Jain text from India entitled the Lokavibhâga, dated 458 AD, where shunya (“void” or “empty”) was employed for this purpose. The first known use of special glyphs for the decimal digits that includes the indubitable appearance of a symbol for the digit zero, a small circle, appears on a stone inscription found at the Chaturbhuja Temple at Gwalior in India, dated 876 AD. There are many documents on copper plates, with the same small o in them, dated back as far as the sixth century AD, but their authenticity may be doubted.

China

Since the 4th century BC, counting rods were used in China for decimal calculation s including the use of blank spaces. Chinese mathematicians understood negative numbers and zero, some mathematicians indicated the for the latter with wúrù (無入 “no entry”), kōng (空 “empty”) and the frame-like symbol 口/囗, until Gautama Siddha introduced the symbol 0 in the 8th century.

Prior to that, The Nine Chapters on the Mathematical Art, composed in the 1st century AD, had already explicitly stated “[when subtracting] subtract same signed numbers, add differently signed numbers, subtract a positive number from zero to make a negative number, and subtract a negative number from zero to make a positive number.”

The Arab world

The Hindu-Arabic numerals and the positional number system were introduced around 500 AD, and in 825 AD, it was introduced by a Persian scientist, al-Khwārizmī, in his book on arithmetic. This book synthesized Greek and Hindu knowledge and also contained his own fundamental contribution to mathematics and science including an explanation of the use of zero. It was only centuries later, in the 12th century, that the Arabic numeral system was introduced to the Western world through Latin translations of his treatise Arithmetic.

Greeks and Romans

Records show that the ancient Greeks seemed unsure about the status of zero as a number. They asked themselves, “How can nothing be something?”, leading to philosophical and, by the Medieval period, religious arguments about the nature and existence of zero and the vacuum. The paradoxes of Zeno of Elea depend in large part on the uncertain interpretation of zero.

Example of the early Greek symbol for zero (lower right corner) from a 2nd century papyrus

By 130 AD, Ptolemy, influenced by Hipparchus and the Babylonians, was using a symbol for zero (a small circle with a long overbar) within a sexagesimal numeral system otherwise using alphabetic Greek numerals. Because it was used alone, not just as a placeholder, this Hellenistic zero was perhaps the first documented use of a number zero in the Old World. However, the positions were usually limited to the fractional part of a number (called minutes, seconds, thirds, fourths, etc.)—they were not used for the integral part of a number. In later Byzantine manuscripts of Ptolemy’s Syntaxis Mathematica (also known as the Almagest), the Hellenistic zero had morphed into the Greek letter omicron (otherwise meaning 70).

Another zero was used in tables alongside Roman numerals by 525 (first known use by Dionysius Exiguus), but as a word, nulla meaning “nothing”, not as a symbol. When division produced zero as a remainder, nihil, also meaning “nothing”, was used. These medieval zeros were used by all future medieval computists (calculators of Easter). The initial “N” was used as a zero symbol in a table of Roman numerals by Bede or his colleague around 725.

The Americas

The back of Olmec stela C from Tres Zapotes, the second oldest Long Count date discovered. The numerals 7.16.6.16.18 translate to September, 32 BC (Julian). The glyphs surrounding the date are thought to be one of the few surviving examples of Epi-Olmec script.

The Mesoamerican Long Count calendar developed in south-central Mexico and Central America required the use of zero as a place-holder within its vigesimal (base-20) positional numeral system. Many different glyphs, including this partial quatrefoil—MAYA-g-num-0-inc-v1.svg—were used as a zero symbol for these Long Count dates, the earliest of which (on Stela 2 at Chiapa de Corzo, Chiapas) has a date of 36 BC.[22] Since the eight earliest Long Count dates appear outside the Maya homeland,[23] it is assumed that the use of zero in the Americas predated the Maya and was possibly the invention of the Olmecs. Many of the earliest Long Count dates were found within the Olmec heartland, although the Olmec civilization ended by the 4th century BC, several centuries before the earliest known Long Count dates.s lacked a final sexagesimal placeholder. Only context could differentiate them.

Although zero became an integral part of Maya numerals, it did not influence Old World numeral systems. Quipu, a knotted cord device, used in the Inca Empire and its predecessor societies in the Andean region to record accounting and other digital data, is encoded in a base ten positional system. Zero is represented by the absence of a knot in the appropriate position.

Here Leonardo of Pisa uses the phrase “sign 0”, indicating it is like a sign to do operations like addition or multiplication. From the 13th century, manuals on calculation (adding, multiplying, extracting roots, etc.) became common in Europe where they were called algorismus after the Persian mathematician al-Khwārizmī. The most popular was written by Johannes de Sacrobosco, about 1235 and was one of the earliest scientific books to be printed in 1488. Until the late 15th century, Hindu-Arabic numerals seem to have predominated among mathematicians, while merchants preferred to use the Roman numerals. In the 16th century, they became commonly used in Europe.

http://en.wikipedia.org/wiki/0_(number)

Qu’est-ce que le virtuel?

May 26, 2012 § Leave a comment

LEVY, Pierre : Qu’est-ce que le virtuel?. Paris : La Découverte, 1998.

http://hypermedia.univ-paris8.fr/pierre/virtuel/virt0.htm

Giovanni Anselmo(1934, italy)

May 26, 2012 § Leave a comment

sans titre, 1966

Fer, bois, pesanteur

Effet prouduit sur la pesanteur de l’univers, 1969

20 photos prises chacune à un intervalle de 10 pas en marchant vers le soleil couchant

 

standard of space-time

January 26, 2011 § Leave a comment

standard of space-time (prototype), 2008 ; paper roll, print on adhesive ; 3.8 x 280 cm

This time, I addressed the size of the images recorded by the video camera,
whose width to height ratio was 4:3.
To give the visual equivalent of a millisecond,
I defined the width of an image as 2,8 cm,
and put the 25 images on a band of paper
leaving a gap of the same width for each missing millisecond.
I thus obtained a band 28 meters long representing one second,
creating a standard of space-time.

I also made a case for this space-time standard
using the proportions of the screen (4:3 and 16:9).

paper second

January 26, 2011 § Leave a comment

a long second(paper second, prototype), 2008 ; ink on paper

I also retranscribed this video capture of one second on a band of paper,

which gave me a physical approach of the video

and its looped form.

a long second

January 26, 2011 § Leave a comment

a long second, 2008 ; projector, DVD player ; variable dimensions

I filmed, for a period of one second,
a chronometer calibrated in milliseconds.

The video camera speed was 25 images per second,
so it could not capture all one thousand milliseconds in one second.

I then compensated for the missing milliseconds between the captured ones,
by inserting one black frame for each missing millisecond.
The original one second became forty seconds.

This video is played repeatedly.

Where Am I?

You are currently browsing entries tagged with materialization at sunkyung oh.